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Bohm criterion for a plasma composed of electrons and positive dust grains
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An investigation is presented of a collisionless sheath of a dusty plasma whose constituents are positively
charged dust grains and electrons. Accounting for the Boltzmann electron density distribution and the hydro-
dynamic dust fluid model, supplemented by Poisson and dust charging equations, a space-charge sheath model
is developed. The Bohm criterion for a dusty plasma system with electrons and positive dust grains is deduced.
The results can have relevance to space and laboratory plasmas.
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I. INTRODUCTION

During the last decade, there has been a great dea
interest@1–4# in investigating numerous collective process
in a dusty plasma. Collective processes involve studies of
dust grain shielding@5,6#, the dusty plasma sheath@7,8#, and
the excitation of waves and instabilities@9–11# as well as
coherent nonlinear structures@12–14#. The simplest coheren
nonlinear structure, which can exist in a bounded plas
without the dust grain, is a steady-state collisionless spa
charge sheath at a wall or a negative electrode. It is, th
fore, of significant interest to investigate an effect which c
be produced on the sheath by the presence of charged
particles. From the point of view of applications, such
problem is of great importance in connection with the det
mination of the dust flux to walls or electrodes in laborato
glow discharges, and in material processing as well as
dusty space plasmas.

If a plasma consists of positive ions, electrons, and d
particles of a constant charge, the problem of a space-ch
sheath is essentially the same as that in a plasma with
tiple ion species, which has been studied both in the cas
various positive ion species@15–17#, and in the case of posi
tive and negative ion species~e.g., Refs.@18–20#, and refer-
ences therein!. However, charges on the dust grain surfa
may vary owing to the variation of the electron and ion c
rents that reach the dust grain surface during the dust g
charging. The account of dust charge fluctuations in the d
acoustic and dust ion-acoustic waves results in a numbe
interesting effects@21–25#. One can expect that the variabi
ity of a dust particle charge will also result in some intere
ing effects@8# in the theory of the near-wall space-char
sheath.

The simplest model of a dusty plasma is the one acco
ing for atoms, electrons, and positive dust particles. We n
that dust grains can acquire positive charge due to thermi
emission@26# and photoemission@27–29#; in a thermal dusty
plasma, the dust grains are mostly charged positively@30#.

*Also at the Department of Plasma Physics, Umea˚ University,
S-90187 Umea˚, Sweden.
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The theory of dust acoustic waves in such a plasma, w
account of the variable charge of the dust particles, was
veloped in Ref.@31#. In this paper, we formulate a model fo
a space-charge sheath in an electron-positive dust pla
and present a Bohm criterion~e.g., Refs.@32–34#, and refer-
ences therein!.

The paper is organized in the following fashion. In Se
II, we present our steady-state sheath model based on
Boltzmann electron distribution and the hydrodynamic eq
tions for positively charged dust grains; the governing eq
tions are supplemented by Poisson’s and dust charging e
tions. The Bohm criterion is developed in Sec. III, whe
numerical results are also presented. Section IV conta
concluding remarks and possible applications.

II. MODEL

We consider a stationary space-charge sheath at a p
surface in an unmagnetized dusty plasma whose constitu
are atoms, electrons, and positively charged dust particula
The surface is under a potential which is about or below
floating potential, i.e., the density of the electron current
the surface is of the same order of magnitude of or sma
than the density of current delivered by dust grains. It
assumed that at large distances from the surface~at the
‘‘sheath edge’’!, where the plasma is quasineutral, plasm
parameters tend to constant values, which will be designa
with the indexs.

One should expect that the velocity of the directed mot
of dust particles in the direction towards the surface is in
sheath of the order ofAZsTe /md, whereTe is the electron
temperature in energy units andZ and md are the charge
number and the mass of a dust particle, respectively. It
lows that the density of the electric current transported by
particles is of the order ofeZsndsAZsTe /md, wheree is the
magnitude of the electron charge andnd is the number den-
sity of the dust particles. Since the density of the net elec
current does not change across the sheath, and since a
surface it is of the same order as the density of the cur
transported by the dust particles, the density of the net e
tric current in the sheath is of the order ofeZsndsAZsTe /md,
and this is also the order of the net electron current dens
©2000 The American Physical Society10-1
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The density of the electron thermal current is of the order
enesC̄e , wherene is the electron number density~note that
nes5Zsnds in the approximation considered!, C̄e

5A8Te /pme is the mean electron thermal velocity, andme
is the electron mass. It follows that the ratio of the net el
tron current in the sheath to the electron thermal current i
the order ofAZsme /md. SinceZs!md /me , the above ratio
is small and the distribution of the electron number dens
in the sheath may be described by the Boltzmann distr
tion, namely,

ne5nesexp~ef/Te!, ~1!

wheref is the electrostatic potential~for definiteness, zero o
the potential is chosen at the sheath edge!.

We assume that the temperature of the gas of dust
ticles is much smaller than the electron temperature. T
the energy of the directed motion of dust particles toward
surface substantially exceeds the energy of their thermal
tion, and all the dust particles at a given point of the she
have approximately the same velocity, which is directed
ward the surface. Assuming that the motion of dust partic
is unaffected by impacts of electrons and atoms, one
write, the continuity and momentum equations for the d
particles as

ndvd5Jd , mdvd

dvd

dy
52eZ

df

dy
, ~2!

respectively, where they axis is directed from the surfac
into the plasma,vd is the dust particle velocity in the direc
tion toward the surface, andJd is an unknown constant~the
number density of the dust flux to the surface!.

Assume that the time of flight of a dust particle across
sheath substantially exceeds the mean time between su
sive electron impacts suffered by the particle or the m
time between successive emission acts. Note that this
sumption implies, generally speaking, that the variation
the charge numberZ across the sheath is much larger th
unity. Then charging of a dust particle may be considered
a continuous process, and may be described by the equ

2vd

dZ

dy
5

I 12I 2

e
, ~3!

whereI 1 is the emission current andI 2 is the electron col-
lection current. Expressions for these currents are writte
the forms

I 15eA f, I 25eB
ne

nes
g, ~4!

whereA andB are constants; they are associated with ch
acteristic frequencies of the emission acts and of the imp
of the plasma electrons suffered by a dust particle, resp
tively, f 5 f (Z) andg5g(Z) are dimensionless functions o
~a local value of! Z. For definiteness, we assume that t
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normalization factorsA andB are defined in such a way tha
f (Zs)51, g(Zs)51. For example, if dust is charged by U
irradiation @27#, then

A5pR2JYexp~2sgs!, f 5exp@2s~g2gs!#, ~5!

whereR is the radius of a spherical dust particle,J is the flux
density of the UV photon beam,Y is the yield of photoelec-
trons per one photon,g5Ze2/RTe[ew/Te , w is the surface
potential of the dust grain,gs5Zse

2/RTe , s5Te /Tp , and
Tp is the average energy of the emitted photoelectrons. S
lar expressions can also be written for the case when du
charged by thermionic emission@26#.

Assuming that the dust grain size is much smaller than
electron Debye radius, one can employ for the electron c
lection current an expression given by the orbital-limit
motion theory; see, e.g., Refs.@35,36#. Then one can write

B5~11gs!pR2nesC̄e , g5
11g

11gs
. ~6!

We note that the assumption of a constant valueZs of the
dust particle charge number at the sheath edge implies
Zs is a root of the equationA5B.

We assume that the intergrain spacings are much sm
than the sheath thickness.~Since the latter is of the order o
the electron Debye radius, this amounts to assuming tha
number of grains in the Debye sphere is large.! Then the dust
charge distribution in space may be considered as cont
ous, and the Poisson equation reads

d2f

dy2 54pe~ne2Znd!. ~7!

We introduce dimensionless variables

h5
y

lD
, V5

vd

vds
, Z̃5

Z

Zs
, F5

ef

Te
, ~8!

wherelD5ATe/4pnese
2 is the electron Debye radius, an

vds5Jd /nds is the dust particle velocity at the sheath edg
The system of equations now assumes the forms

VV852~12b!Z̃F8, VZ̃85a~geF2 f !,
~9!

F95eF2Z̃/V,

where prime denotes differentiation with respect toh, and

a5
4lD

vdsZs
, b512

ZsTe

mdvds
2 . ~10!

Obviously, the parametera, as introduced here, represen
the ratio of the scale of the sheath thickness,lD , to the
length scale of variation of the charge of a dust particle.

In order to deduce an initial-value problem, it is conv
nient to introduce new independent variableF̃52F. Equa-
tions ~9! then assume the forms
0-2
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V
dV

dF̃
5~12b!Z̃, EV

dZ̃

dF̃
5a~ f 2ge2F̃!,

E
dE

dF̃
5

Z̃

V
2e2F̃, ~11!

whereE5F8 is the dimensionless electric field. These equ
tions should be solved at the interval@0,eU/Te#, whereU is
the ~absolute value of the! sheath voltage, with initial condi
tions

V~0!51, Z̃~0!51, E~0!50. ~12!

III. BOHM CRITERION

We seek a solution at smallF̃ in the forms

V511PF̃p1¯ , Z̃511QF̃q1¯ , E5WF̃w1¯ ,
~13!

wherep, P, q, Q, w, andW are ~real! constants to be deter
mined later. For expansion~13! to be consistent with bound
ary conditions~12!, p, q, andw should be positive. Further
more, it should bew>1, since the integral

h5E
F̃

eU/Te
dF̃/E ~14!

must diverge asF̃→0 ~which corresponds toh→`).
Expanding the first equation in Eqs.~11!, one finds that

p51 andP512b. Expanding the other equations, one a
rives at

WQqF̃w1q215a~F̃2GQF̃q! ~15!

and

W2wF̃2w215bF̃1QF̃q, ~16!

where

G5
d~g2 f !

dZ̃
U

Z̃51

. ~17!

We note that the electron collection current increases with
increase of the potential of the surface of a dust part
while the emission current decreases due to enhanced re
tion by the potential barrier. It follows thatG.0.

Assuming that all the terms of Eqs.~15! and ~16! are of
the same order, one should setw5q51. Equation~15! gives

Q5
a

W1aG
. ~18!

Substituting this relationship into Eq.~16!, one arrives at a
cubic equation forW:
01641
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W31aGW22bW2a~11bG!50. ~19!

The above equation may be converted to a two-param
form by means of the substitutionW5G21/2z,

z31Amz22nz2Am~11n!50, ~20!

wherem5a2G3 andn5bG. The discriminant of Eq.~20! is

D54n328mn214m~m29!n14m2227m. ~21!

The roots of the cubic polynomial on the right-hand si
of Eq. ~21! are given by Eqs.~A1!, ~A3!, and ~A4! of the
Appendix, and are depicted in Fig. 1. Equation~20! has three
real roots in the domains$m>0,n>n1% and $m>27/8,n2
<n<n3%. These roots are given by Eqs.~A9! and ~A10! of
the Appendix. In the rest of the half-plane$m>0,2`,n
,`%, Eq. ~20! has a real and two complex roots.

Assuming that the electric field in the vicinity of th
sheath edge is directed toward the sheath, one should
for a positive root of Eq.~20!. It follows that the considered
problem is well posed at such points of the half-plane$m
>0,2`,n,`% for which Eq. ~20! has just one positive
root, other roots being negative or complex.

One can see that Eq.~20! has a zero root on the linesm
50 and n521 @lines EOFG and FHJ in Fig. 1; point H
here is defined by the equationn3(m)521 and has coordi-
nates~4, 21!#. In the vicinity of these lines, the roots i
question are

z52S 11
1

n DAm1¯ , z5Am~n11!1¯ , ~22!

respectively. It follows that this root is positive in the~right!
vicinity of OF and in the upper vicinity ofFHJ; the root is
negative in the vicinity ofOE, in the vicinity of FG, and in
the lower vicinity ofFHJ.

Other roots of Eq.~20! on lines EOFG and FHJ take
values

FIG. 1. Roots of the discriminant of Eq.~20!. OA: n1

5n1(m), Eq. ~A1!, and the first equation in Eq.~A3!. BC: n2

5n2(m), the second equation in Eq.~A3!. BD: n35n3(m), Eq.
~A4!.
0-3
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z56An, z5
2Am6Am24

2
, ~23!

respectively. It follows that Eq.~20! has, apart from the zero
root, a positive root and a negative root onOE, two complex
roots onOG andFH, and two negative roots onHJ.

The behavior of the roots on linesOA, BC, and BD is
shown in Fig. 2. One can see that Eq.~20! has a positive root
and two ~equal! negative roots onOA; three negative roots
on BC andBH; a positive root and two negative roots onHD.

Consider now domainsI -V shown in Fig. 1.~The do-
mains do not include boundaries.! One can conclude that Eq
~20! has a positive root and two negative roots in domainI, a
positive root and two complex roots in domainII , a negative
root and two complex roots in domainIII , a positive root and
two negative roots in domainIV, and three negative roots i
domainV.

It follows that the problem is well-posed in the domainsI,
II , andIV, i.e., at

n.21. ~24!

A condition of well posedness of a sheath problem is usu
referred to as the Bohm criterion; see, e.g., Refs.@32–34#.
Thus inequality~24! represents the Bohm criterion for th
problem considered. Another form of this inequality is

vds.S GZsTe

~G11!md
D 1/2

, ~25!

IV. CONCLUDING DISCUSSION

The Bohm criterion appears in the above treatment a
condition of well posedness of the sheath problem tra
formed to the independent variableF̃: under this condition,
a solution exists with the electric field at the sheath ed
F̃50, directed toward the surface~and such a solution is
unique!. On the other hand, the Bohm criterion may be
terpreted as a condition of well posedness of the sheath p
lem in the original statement. Indeed, one can check rea

FIG. 2. Values of roots of Eq.~20! on linesOA, BC, andBD.
Solid line: zi5zi@m,n1(m)# ( i 51,2,3); lineOA. Short dashes:zi

5zi@m,n2(m)#; BC. Long dashes:zi5zi@m,n3(m)#; BD.
01641
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that Eq.~19! multiplied byW coincides with the characteris
tic equation at which one arrives while seeking an expon
tial solution~with the exponential factor written ase2Wh) to
Eq. ~9! linearized around the boundary condition ath→`.
One can see from Fig. 2 that on each of the linesOA, BC,
and BD equal roots are negative. Since Eq.~20! has no
imaginary roots atm.0, one can conclude that real parts
complex roots in the domainsII and III are negative. It fol-
lows that inequality~24! represents a condition under whic
nontrivial solutions to Eq.~9! exist which are compatible
with the boundary conditions at the sheath edge~and these
solutions are monotonic at the sheath edge and belong
one-parameter family!.

Inequality ~24! @or ~25!# does not involvea. In other
words, the effect of the variability of charge of dust particl
manifests itself only through parameterG.

We note that once inequality~24! is independent ofa, it
can be derived in a simpler way, by means of considering
limiting casea→`. A solution to Eq.~19! in this limit is
W152aG,W2,356Ab1G21. Thus Eq.~19! has a positive
root provided thatb.2G21, in accord with Eq.~24!.

The above analysis does not apply in cases when on
more roots of Eq.~19! are zero. Indeed,W50 means that the
respective solution at smallF̃ cannot be sought in the form
of Eq. ~13! with w51. It follows that the above analysis doe
not apply on lineFHJ, and that is why the Bohm criterion
appears in the above analysis in the form of a strict inequ
ity. On the other hand, it is well known that the Bohm crit
rion usually allows the equality sign and, furthermore,
usually valid just in the marginal form. Therefore, one c
expect that the right-hand side of inequality~25! gives the
value of the dust particle velocity at the sheath edge. It
be seen easily that this quantity coincides with the veloc
of low frequency (v!A/Z0), long wavelength~in compari-
son with the electron Debye radius! dust acoustic waves in
collisionless dust plasmas with a variable dust parti
charge and a low translational temperature of the dust.

In the limiting casea50, the model of a sheath in a dus
plasma with a variable dust particle charge, as formulate
Sec. II, becomes identical to the model of a sheath in
plasma with positive particles of a constant charge~or with
multiply charged ions!. Therefore, the Bohm criterion in th
limiting casea50 is given by the same formula as that
the conventional Bohm criterion in a plasma with multip
charged ions, viz.

vds>S ZsTe

md
D 1/2

, ~26!

One can see that Eq.~25!, which does not involvea, does
not provide a limiting transition in the casea→0. On the
other hand, Eq.~25! conforms to Eq.~26! in another limiting
case, namely,G→`. @The same result may be obtained b
imposing the limitG→` directly on Eq.~19!: a solution in
this limit is W152aG,W2,356Ab, and there is just one
positive root provided thatb is positive.# Note that this con-
clusion is consistent with Eq.~18!: whenG→`, Q goes to
zero and the particle charge at the sheath edge is cons
The physical sense of this result may be understood as
0-4
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lows. The charging of a particle at the sheath edge is cau
by the variations of the emission current and of the elect
collection current~the unperturbed values of these curre
are equal and do not cause any charging!. The latter varia-
tions are caused by variations of the local potential and of
particle charge. If the dependence of the emission cur
and of the electron collection current on the particle charg
strong (G@1), then the variation of the particle charge mu
be small; otherwise it would cause a variation of the curre
which cannot be compensated for either by a variation of
currents caused by a variation of potential or by accumu
tion of the charges on the surface of a particle.

The results of our investigation should be used, in parti
lar, for evaluating the dust flux towards a wall or toward
negative electrode, or for the calculation of the characteri
of an electrostatic probe in a dusty plasma which is co
posed of atoms, electrons and positively charged dust gra
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APPENDIX: SOLUTION OF EQ. „20…

If m,27/8, the discriminant of Eq.~20! @which is given
by the cubic polynomial on the right-hand side of Eq.~21!#
has one real root

n152D1 cosec 2d11
2m

3
, ~A1!

where

D15
2

3
Am2127m, d15arctanS tan

d2

2 D 1/3

,

d25arcsin
8Am~m127!3

8m22540m2729
. ~A2!
p
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If m.27/8, the discriminant has three real roots

n15D1 cosd31
2m

3
, n252D1 cosS d32

p

3 D1
2m

3
,

~A3!

n352D1 cosS d31
p

3 D1
2m

3
, ~A4!

where

d35
1

3
arccos

28m21540m1729

8Am~m127!3
. ~A5!

Note that

m→0: n15
3

22/3m1/31¯ , ~A6!

m5
27

8
: n159, n252

9

8
, n352

9

8
, ~A7!

m→`: n15m1¯ , n25211¯ , n35m1¯ .
~A8!

The real roots of Eq.~20! may be written as

z15D2 cosd42
Am

3
, z252D2 cosS d42

p

3 D2
Am

3
,

~A9!

z352D2 cosS d41
p

3 D2
Am

3
, ~A10!

where

D25
2

3
Am13n, d45

1

3
arccos

Am~22m118n127!

2~m13n!3/2 .

~A11!
tt.
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@28# M. Horányi, S. Robertson, and B. Walch, Geophys. Res. L
22, 2079 ~1995!; B. Walch, M. Horányi, and S. Robertson
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